A close look at our simple initial C program as it exists in the HCS08QGS
microcontroller (details may differ for the SH8 microcontroller.):

C code (comments stripped out):
void main(void){
short i=0;
PTBDD PTBDD6=1;
for(;;){
__ RESET _WATCHDOG();
PTBD PTBD6=0;

1++;
PTBD PTBD6=1;
b

b
Disassembled equivalent:
E092 AIS #-2 ;Add immediate value (-2) to stack pointer (to make space for 1
E094 TSX ;Transfer the value in the stack ponter (+1?) to HX
E095 CLR 1,X ;Clear the byte in RAM pointed to by X+1 (least sign byte of 1)
E097 CLR X ;Clear the byte in RAM pointed to by X (most significant byte of 1)

E098 BSET 6,0x03 ;Bit Set at address 0x03 (PTABDD) bit 6 — makes it an output
E09A STA 0x1800 ;Store whatever is in “A” (it’s zero) to address 1800 (feeds dog)
E09D BCLR 6,0x02 ;Bit Clear at address 0x02 (PTABD) bit 6

EO9F INC 1,X ;Increment byte pointed to by X+1 (least significant byte of 1)
EOA1 BNE *+3 ; abs=0xE0A4 Branch to EOA4 if prev. operation didn’t give zero.
EOA3 INC X ;Increment byte pointed to by X (most significant byte of 1)

EOA4 BSET 6,0x02 ;Bit Set at 0x02 (PTBD) bit 6
EOA6 BRA *-12 ;abs=0xE09A Branch always to address E09A
EOA8 BRSET 0,0x00 *-83 ;abs=0xE055 Branch if bit 0 at address 0 is set to E05S5.

Machine language (hexadecimal) in memory:

E090 0000 A7FE956F 01 7F AIS #-2; TSX; CLR 1,X; CLR)X

E098 1C03C718001D026C BSET 6,0x03; STA 0x1800; BCLR 6,0x02; INC
EOAO0 0126017C1C0220F2 1,X; BNE *+3; INC ,X; BSET 6,0x02; BRA *-12
EOA8 00 00 uu uu uu uu uu uu BRSET 0,0x00 *-83 (we should never get to this)

In memory:

Data:1 (globals)

_PTBDD address 0x3
_SRS address 0x1800
_PTBD address 0x2

Data:2 (locals — on stack)
1 address 0x14E

A close look at our simple initial C program, with I put in as a global instead of a local
variable, +- as it exists in the microcontroller:

C code (comments stripped out):
short i=0;
void main(void){
PTBDD PTBDD6=1;
for(;;){
__ RESET _WATCHDOG();
PTBD PTBD6=0;
1++;
PTBD PTBD6=1;
b
b

Disassembled equivalent:

E092 BSET 6,0x03 ;Bit Set at address 0x03 (PTABDD) bit 6 — makes it an output
E094 STA 0x1800 ;Store whatever is in “A” (it’s zero) to address 1800 (feeds dog)
E097 BCLR 6,0x02 ;Bit Clear at address 0x02 (PTABD) bit 6

E099 LDHX #0x0100 ;Load HX with pointer to i (address 0x100)

E09C INC 1,X ;Increment byte pointed to by X+1 (least significant byte of 1)
EO9E BNE *+3 ; abs= OXEOA1 Branch to EOA1 if prev. operation didn’t give zero.
EOAO0 INC X ;Increment byte pointed to by X (most significant byte of 1)

EOA1 BSET 6,0x02 ;Bit Set at 0x02 (PTBD) bit 6
EOA3 BRA *-15 ;abs=0xE094 Branch always to address E094
EOA8 BRSET 0,0x00 *-86 ;abs=0xEO04F Branch if bit 0 at address 0 is set to EO4F.

Machine language (hexadecimal) in memory:

E090 00001C03C718001D BSET 6,0x03; STA 0x1800; BCLR

E098 024501 006C 012601 6,0x02; LDHX #0100; INCI1,X; BNE *+3

EOAO0 012601 7C1C0220F2 INC,X; BSET 6,0x02; BRA *-12

EOA8 00 00 uu uu uu uu uu uu BRSET 0,0x00 *-83 (we should never get to this)

In memory:

Data:1 (globals)

1 address 0x100
_PTBDD address 0x3
_SRS address 0x1800
_PTBD address 0x2

Data:2 (locals — on stack)
None

Code for simple program to light LED to a particular level
In this case, the global variable sets it to “off”.

main.c:

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations
*/

short brightness=0; /*brightness, can vary from 0 to 9999*/

void main(void) {
short j;
/*EnableInterrupts;*/ /* enable interrupts */
/* include your code here */
PTBDD PTBDD6=1;

for(;;) {
__RESET WATCHDOG(); /* feeds the dog */
PTBD PTBD6=0; /*turns the LED on*/
for(j=0; j<brightness;j++){}
PTBD PTBD6=1; /*turns the LED off*/

for (j=brightness;j<10000; j++){}
} /* loop forever */
/* please make sure that you never leave main */

