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EE247: On Multitasking 
March 23, 2020 

 
Background: 

The Wilkes university course EE247 Programming for Embedded Systems is concerned 
with operating computers that interact with the real world as a part of systems.  Embedded 
computing typically takes place in the context of a system that may be large or small, but the 
computer is only a small part of it, though typically an important part.  Examples of such systems 
include such things as microwave ovens, automotive engine controls, navigation systems, and 
even things as small and trivial as the control of an electric hand held drill.  The role of the 
embedded computer is typically to control things, often including interactions with a human user 
through a display and perhaps a touchscreen or even a keyboard.  At the same time, the computer 
must control physical things using motors, solenoids, light beams, and other actuators, and sense 
things in the environment such as temperature, speeds of things, pressure, etc.   

Just like human beings, an embedded computer usually must be able to “multitask”, that 
is, do more than one thing at the same time.  However, digital computers are inherently “single 
task” in that they execute instructions sequentially, one instruction at a time.  (Modern computers 
have tricks to speed things up by doing more than one instruction at a time, but they still conform 
to a model that looks like it is one at a time.)  So, how do we get inherently single instruction 
stream computers to be able to do multiple things simultaneously?  That is, multitask?   

The basic concept is similar to what in Digital Design is called “multiplexing”.  Time is 
divided, and different slices of time are devoted to different tasks.  How to do that for digital 
computers is a complex, but interesting, issue.  Doing it in a “real time” environment, where 
tasks face deadlines, and there is a sense of time flowing against which tasks of different 
priorities must be done, is even more challenging.  But, that’s what we want to be able to do. 

 
Some Definitions and Discussion: 

If we are going to do “multitasking”, it helps to define some of the terms we will be 
using.  I’m drawing definitions from Wikipedia (readily available) and then will narrow them 
somewhat for our use in this class: 

 
Task (computing) 
From Wikipedia, the free encyclopedia 
In computing, a task is a unit of execution or a unit of 
work. The term is ambiguous; precise alternative terms 
include process, light-weight process, thread (for 
execution), step, request, or query (for work). In the 
adjacent diagram, there are queues of incoming work to 
do and outgoing completed work, and a thread pool of 
threads to perform this work. Either the work units 
themselves or the threads that perform the work can be referred to as "tasks", and these can be 
referred to respectively as requests/responses/threads, incoming tasks/completed tasks/threads (as 
illustrated), or requests/responses/tasks.  (The diagram shows A sample thread pool (green boxes) 
with task queues of waiting tasks(blue) and completed tasks (yellow), in the sense of task as "unit of work".) 
 

I’m going to narrow this somewhat to say that a task is, yes, a single unit of work, but one 
that it is executed once and completes.  In our context, this is like a “command” that is invoked 
by the user typing in a command in PuTTY.  The command “dispatches” a task, the unit of work, 
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to carry out the “task” that needs to be done, such as toggle an LED or motor on or off, or adjust 
the speed of a motor, or return a reading for a photosensor.  More specifically, the “task” is 
executed by the command callback function.  A command callback function that is executing is 
an active task, or the “instance” of the task that is executing.  A callback function that is not 
executing is a potential task that could be dispatched (instance created) sometime in the future. 

 
Process (computing) 
From Wikipedia, the free encyclopedia 

In computing, a process is the instance of a computer program that is being executed by one or 
many threads. It contains the program code and its activity. Depending on the operating 
system (OS), a process may be made up of multiple threads of execution that execute 
instructions concurrently.[1][2] 
While a computer program is a passive collection of instructions, a process is the actual execution of 
those instructions. Several processes may be associated with the same program; for example, 
opening up several instances of the same program often results in more than one process being 
executed. 
Multitasking is a method to allow multiple processes to share processors (CPUs) and other system 
resources. Each CPU (core) executes a single task at a time. However, multitasking allows each 
processor to switch between tasks that are being executed without having to wait for each task to 
finish. Depending on the operating system implementation, switches could be performed when tasks 
perform input/output operations, when a task indicates that it can be switched, or on 
hardware interrupts. 
A common form of multitasking is time-sharing. Time-sharing is a method to allow high 
responsiveness for interactive user applications. In time-sharing systems, context switches are 
performed rapidly, which makes it seem like multiple processes are being executed simultaneously 
on the same processor. This seeming execution of multiple processes simultaneously is 
called concurrency. 

 
This definition of “process” is focused on general purpose computing where multiple 

“programs” are operating.  We really have only one “program” our application, or perhaps more 
precisely, the executable (program) that we have downloaded and installed onto our 
microcontroller by “programming” (in a different sense) its FLASH memory (equivalent to 
ROM).  So, we are going to again narrow the definition of “process” to mean a continuously 
operating ongoing task (or series of tasks) that does not run to completion immediately.  
Typically a process is periodic, or responds to situations.  From what we have been doing, a 
“process” would be to blink an LED at a constant frequency, run a stepper motor, or maintain a 
clock.  We have been doing these things, we just had not identified what we were doing formally 
as a “process” before.  (In a general purpose computer, the computer may indeed be running 
multiple “programs” each of which has one or more processes going to do things like maintain a 
user interface, communicate by Ethernet with a remote site, monitor an input device like a 
mouse, and perhaps debug a microcontroller.) 

Notice the word “instance”.  A process may be running, or not, but it is actually the 
“instance” of a task that runs.  In our case we won’t normally be having multiple instances of the 
same process executing.  But, suppose you have a function that starts up and runs a stepper 
motor.  You could conceivably have two invocations of that function, one for stepper motor A 
attached to PTB3 and PTB4, and another for stepper motor B attached to PTB6 and PTB7.  Both 
could use the same code (if it was general enough, and reentrant) with data within each (stored in 
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private or local variables) that indicated which output pins were being used for each.  (Have you 
ever, in Windows, clicked an application twice, perhaps in annoyance of the delay coming up, 
and then found that you had two “instances” of that application running, when you only wanted 
and needed one?  That’s an illustration of multiple instances.  You could conceivably work on 
two different projects at the same time using the two instances.)  The word “instance” also 
applies to tasks.  A task might be carried out by a function (like a command function) but the 
parameter may indicate a different way of doing the task.  In theory one might have two “ADC” 
tasks active, one to return the value of the pot, the other the value of the photosensor.  Again, 
you’d need to make sure the code was written to be reentrant and critical resources (the ADC) 
shared without one instance of the task interfering with the other.  In our world that can’t happen 
since the “terminal” cannot have more than one active task at a time.  But, that task may be 
invoked while other tasks and processes (to run motors, blink LED’s, etc.) are active. 

Managing simultaneous tasks and processes is tricky.  In this course, we are doing 
exercises to develop and understanding of some of the issues.  We don’t have help managing 
things because we are in a “bare metal” environment: we have to manage everything ourselves.  
That’s the intent!  On small systems, that’s necessary because resources are of memory and 
processing capability are limited.  But, then, so is the scope and complexity of what we are trying 
to do.  If we were trying to do something really complicated, we’d need help: a more capable 
microcontroller or an even larger computer, and help with managing it.  The “help with 
managing it” means an “Operating System”. 

 
Operating system 
From Wikipedia, the free encyclopedia 

An operating system (OS) is system software that 
manages computer hardware, software resources, and provides 
common services for computer programs. 
Time-sharing operating systems schedule tasks for efficient use 
of the system and may also include accounting software for cost 
allocation of processor time, mass storage, printing, and other 
resources. 

For hardware functions such as input and output and memory 
allocation, the operating system acts as an intermediary between 
programs and the computer hardware,[1][2] although the application 
code is usually executed directly by the hardware and frequently 
makes system calls to an OS function or is interrupted by it. 
Operating systems are found on many devices that contain a 
computer – from cellular phones and video game consoles to web 
servers and supercomputers. 

 
Our microcontrollers do not have an “Operating System”.  That means that our 

“application” must also perform the duties that an “Operating System” would on a more 
sophisticated computer.  But, there is less to be managed.  We are not maintaining a file system 
(mass storage).  We are not printing.  We are not even managing memory – everything is already 
allocated and installed in memory when our application begins with the calling of “main” out of 
reset.  We do need to communicate – the serial port and its supporting functions (in 
SPI_Functions.c) does that.  We also have “hcc_terminal” to manage the communications in 
order to carry out commands and print strings, one of the functions that an operating system 
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would normally perform.  In a sense, hcc_terminal with the serial port ARE our operating 
system.  But, that only works for commands.  For managing tasks and processes when things get 
going, we are on our own. 

 
Real-time operating system 
From Wikipedia, the free encyclopedia 

A real-time operating system (RTOS) is an operating system (OS) intended to serve real-
time applications that process data as it comes in, typically without buffer delays. Processing time 
requirements (including any OS delay) are measured in tenths of seconds or shorter increments of 
time. A real-time system is a time bound system which has well defined fixed time constraints. 
Processing must be done within the defined constraints or the system will fail. They either are event 
driven or time sharing. Event driven systems switch between tasks based on their priorities while 
time sharing systems switch the task based on clock interrupts. Most RTOSs use a pre-
emptive scheduling algorithm. 
A key characteristic of an RTOS is the level of its consistency concerning the amount of time it takes 
to accept and complete an application's task; the variability is 'jitter'.[1] A 'hard' real-time operating 
system has less jitter than a 'soft' real-time operating system. The chief design goal is not 
high throughput, but rather a guarantee of a soft or hard performance category. An RTOS that can 
usually or generally meet a deadline is a soft real-time OS, but if it can meet a 
deadline deterministically it is a hard real-time OS.[2] 
An RTOS has an advanced algorithm for scheduling. Scheduler flexibility enables a wider, computer-
system orchestration of process priorities, but a real-time OS is more frequently dedicated to a 
narrow set of applications. Key factors in a real-time OS are minimal interrupt latency and 
minimal thread switching latency; a real-time OS is valued more for how quickly or how predictably it 
can respond than for the amount of work it can perform in a given period of time.[3] 

If we are doing a complex application on a sophisticated computer, we would use a Real 
Time Operating System (RTOS) to help us manage things.  In a normal operating system like 
Windows, precise timing is not particularly important.  So the user has to wait a while.  So what?  
No problem.  On the other hand, a computer managing the control system for an aircraft had 
better not just do things when it feels like it.  That is a “hard” real-time application!  The physics 
of the real world will not wait.  There are consequences that matter.  Even in a relatively simple 
application, like a printer, moving the print head precisely in time is needed to make sure the ink 
or toner lands in the right place on the paper. 

 
Our World: 

Our MC9HCS08SH8 microcontroller is too small and limited to be running an RTOS.  
But we want to do things the RTOS way.  We want to be able to control tasks and processes with 
precision.  That is, we are going to do many of the same things that an RTOS would have to do 
to manage multitasking and multiple processes.  This is really what the rest of the course is 
primarily about.  Our tools are some way of dispatching singular “tasks” that the user initiates 
(the terminal will do that for us) and a way to maintain processes that have to keep operating.  
Some processes may be maintained by hardware (such as the TPM timers running a stepper at a 
constant speed).  Others will need to be activated periodically (the clock that maintains time of 
day).  At the heart of it all, we need some way to dispatch tasks, including the tasks that keep 
processes going.  Just as was described for operating systems above, some tasks can be 
dispatched periodically (as time sharing) and others in response to events (interrupts).  We need 
to do all this in a way that is sensitive to the relative priority of the tasks. 



 5 

If We Stick to Polling: 
 Let’s imagine a world (a processor) in which interrupts don’t exist.  How would we 
manage a variety of tasks and processes in which various things are going on with different 
priorities and durations?  We’ll use tasks and processes with which we are familiar: 

1) The terminal process, which actually dispatches tasks to do different things. 
2) A clock process that needs to update variables gHours, gMinutes, and gSeconds. 
3) Monitor the pushbuttons to notice if somebody pushes one 
4) Run a stepper motor.  Assume the stepper has to advance every x milliseconds. 
5) Blink and LED slowly (using a timing loop) – represents computing intensive task. 

 
The most straightforward thing to do is to put all of these in the main loop, as below: 
 

 while(1){                 /* start main loop */ 
  terminal_process(); /* receive and dispatch commands */ 
  s1=PTAD_PTAD2; 
  s2=PTAD_PTAD3; 
  if(s1!=olds1||s2!=olds2){ /* monitor switches */ 
   olds1=s1; 
   olds2=s2; 
   s[0]=s1+’0’; 
   s[1]=s2+’0’; 
   s[2]=’\0’; 
   print(“switches=”); 
   print(s);} 
  if(RTCCNT!=oldRTCCNT){ /Clock: *RTC counts 0-99 each sec */ 
   oldRTCCNT=RTCCNT; 
   gMilliSeconds = gMilliSeconds+10; 
   if(gMilliSeconds>=1000){gMilliSeconds=0; gSeconds++;} 
   if(gSeconds>=60){gSeconds=0; gMinutes++;} 
   if(gMinutes>=60){gMinutes=0; gHours++;}} 
  if(gMilliseconds!=oldmilliseconds){ /* stepper motor driver */ 
   oldmilliseconds=gMilliseconds; 
   stepperCount++; 
   if(stepperCount>=stepperPeriod){ 
    stepperCount=0; 
    stepperIndex++; 
    if(stepperIndex>=4)stepperIndex=0; 
    stepperoutput=outData[stepperIndex]; 
    PTBD=PTBD|stepperoutput<<6;}} 
  /* process to blink the LED slowly */ 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=0; 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=1; 
 }                                 /* end main loop */ 

  
We have seen the problem with this.  With the slow “blink the LED slowly” process 

dominates everything.  We won’t “poll” the clock often enough to keep up with the 10mS 
updates needed.  The stepper will slow to a crawl.  We’ll miss characters in the terminal.  What 
to do?  Well, one thing we could do is to reorganize the main loop to put the highest priority 
tasks at the top, and do a “continue” after each so that we wait on the lowest priority (blink the 
LED at PTB5) until the end.  Reorganizing the main loop looks like: 
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 while(1){                 /* start main loop */ 
  if(RTCCNT!=oldRTCCNT){ /Clock: *RTC counts 0-99 each sec */ 
   oldRTCCNT=RTCCNT; 
   gMilliSeconds = gMilliSeconds+10; 
   if(gMilliSeconds>=1000){gMilliSeconds=0; gSeconds++;} 
   if(gSeconds>=60){gSeconds=0; gMinutes++;} 
   if(gMinutes>=60){gMinutes=0; gHours++; 

continue;}} 
  if(gMilliseconds!=oldmilliseconds){ /* stepper motor driver */ 
   oldmilliseconds=gMilliseconds; 
   stepperCount++; 
   if(stepperCount>=stepperPeriod){ 
    stepperCount=0; 
    stepperIndex++; 
    if(stepperIndex>=4)stepperIndex=0; 
    stepperoutput=outData[stepperIndex]; 
    PTBD=PTBD|stepperoutput<<6;}} 
  terminal_process(); /* receive and dispatch commands */ 
  s1=PTAD_PTAD2; 
  s2=PTAD_PTAD3; 
  if(s1!=olds1||s2!=olds2){ /* monitor switches */ 
   olds1=s1; 
   olds2=s2; 
   s[0]=s1+’0’; 
   s[1]=s2+’0’; 
   s[2]=’\0’; 
   print(“switches=”); 
   print(s); 

continue;} 
  /* process to blink the LED slowly */ 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=0; 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=1; 
 }                                 /* end main loop */ 

 
We show here that the clock advance task has been made the highest priority, followed 

by the stepper, the terminal, and the pushbuttons.  We’d really like terminal_process to return a 1 
if it does something, so that we could put an “if” to continue after it, as we did for those other 
higher priority tasks.  Now, we always return to the top after doing something (except 
terminal_process, since it doesn’t tell us if it did something).  The higher priority tasks have the 
first opportunities to do something each pass through the loop, and we check all the other high 
priority tasks after doing something before we consider the lower priority tasks. 

 
But a fundamental problem remains.  Once we get into the LED timing loops, we are 

stuck there.  There is no way to get back to the high priority tasks while this keeps going.  If we 
can “break up” the processing of this slow task, into many smaller, quicker tasks, we can fix the 
problem.  Otherwise, we can’t.  Not without interrupts.  In this case, we actually can break up the 
timing loops.  But we have to “rewrite” the process into a series of smaller tasks, and that makes 
the process less clear to the observer and more complicated.  The relationship between the 
control variable “blinklimit” and the blink period will have to be recalibrated.  In a more 
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complicated computational process like DSP, this gets “hard”.  But, here’s what we’d do for this 
simple case.  Yes, the algorithm is changes but we can still get the same effect.: 

 
  /* process to blink the LED slowly */ 
  i++; 
  if(i>=blinklimit){i=0; onoff=(onoff+1)&1;} 
  PTBD_PTBD5=onoff; 

__RESET_WATCHDOG; 
 

With Interrupts: 
 Suppose we cannot, or it would be difficult and undesirable, to break up a slow expensive 
process into smaller tasks that can be processed sequentially.  Well, we could conceivably put 
the main loop inside the timing loops (like we did for __RESET_WATCHDOG).  But that’s 
awkward and undesirable too.  What really solves this problem is interrupts.  Interrupts run at a 
“higher level” of priority.  That is, an interrupt can cause processing in the main loop to be set 
aside while a higher priority task is taken care of.  Indeed, for this example, we would move 
everything except the low priority LED blinking out of the main loop: 
 
 while(1){                 /* start main loop */ 
  /* process to blink the LED slowly */ 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=0; 
  for(i=0;i<blinklimit;i++)__RESET_WATCHDOG; 
  PTBD_PTBD5=1; 
 }                                 /* end main loop */ 
 
 The other tasks would be called out if Interrupt Service Routines (for RTC,RDRF): 
 
interrupt 25 void rtc_isr(void){ /Clock: *RTC ints each 10 msec */ 
 char s1,s2, stepperoutput, s[3]; 
 RTCSC_RTIF=1;  /* reset flag */ 
 gMilliSeconds = gMilliSeconds+10; 
 if(gMilliSeconds>=1000){gMilliSeconds=0; gSeconds++;} 
 if(gSeconds>=60){gSeconds=0; gMinutes++;} 
 if(gMinutes>=60){gMinutes=0; gHours++;} 
 stepperCount++; 
 if(stepperCount>=stepperPeriod){ 
  stepperCount=0; 
  stepperIndex++; 
  if(stepperIndex>=4)stepperIndex=0; 
  stepperoutput=outData[stepperIndex]; 
  PTBD=PTBD|stepperoutput<<6;}} 
  s1=PTAD_PTAD2; 
  s2=PTAD_PTAD3; 
 if(s1!=oldS1||s2!=olds2){ /* monitor switches */ 
  olds1=s1; 
  olds2=s2; 
  s[0]=s1+’0’; 
  s[1]=s2+’0’; 
  s[2]=’\0’; 
  print(“switches=”); 
  print(s);}} 
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interrupt 17 void rtdf_isr(void){ 
    terminal_process();} /* receive and dispatch commands */ 

 
 

Notice that this makes the “blink LED” free running while no other tasks are active; it 
actually gets more time since no time needs to be wasted polling other processes to see if they 
are ready to run.  The stepper, clock, and switches are now “time share” tasks that get checked 
every 10 mSec.  If that high a frequency was not needed, they could be checked less often.  If a 
higher frequency of attention is needed, a TPM timer could be used for that purpose (with its 
separate interrupt), or the primary RTF clock could be made to run faster.  BUT, we need to be 
sure that whatever is dispatched on every RTC call can complete before the next one.  That 
should not be a problem for clock updates and advancing the stepper.  The steps taken are finite 
and “in-line” (no looping).   

But the switch checking is different.  We need to print whenever the switches change.  
How long does that take?  Let’s see.  We need to print 11 characters.  At 9600 bps that should 
only take 11.45 mSec.  Hmmm.  That means that the clock’s next interrupt will come before the 
print finishes up!  Well, so the clock will be 1.45 msec late.  And the stepper would hesitate that 
1.45 msec as well.  Is that a problem?  Probably not.  We will not have missed anything, just will 
be slightly late with that update.  But suppose the bit rate is 4800 bps?  Then we have a problem!  
We will miss an interrupt for the clock.  It’s as if 10 mSec vanishes.  The stepper will slightly 
slow down. 

(Actually for the 9600 bps case we might be OK since the first character gets loaded into 
the serial port shift register and the second can be accepted immediately after, so we really only 
need 1.04 msec for the print – almost not a problem at all.  The rest of the ISR code will only 
need a several microseconds.) 

 
Still problems: 
 However.  (There always seems to be a “however, doesn’t there?)  There is still a 
problem.  It is that “print” is a “blocking” function.  Just as our blinking LED process was 
originally.  When we were in the middle of blinking the LED, we couldn’t do anything else.  We 
were “blocked.”:  In the case of print, print calls “putchar” (actually the function 
TERMIO_PutChar, which was passed in to hcc_terminal when we did initialization).  
TERMIO_PutChar code is this: 
 
/*void TERMIO_PutChar(char send)*/  
int TERMIO_PutChar(char send){ 
  int dummy; 
  while(!SCIS1_TDRE);/* wait until TDRE=1 */ 
  dummy = SCIS1; 
  SCID  = send; 
  dummy=send; 
  return dummy; /*added line*/     
}//end SPI_PutChar 
 

Notice the while loop.  This waits until the TDRE flag goes up, meaning that we can pack 
another character into the Transmit Data register.  That blocks us from doing anything else.  
Because putchar is blocking, and because print calls putchar, print is blocking. 
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Now, consider what terminal process does.  It dispatches command tasks, the command 
callback functions.  Suppose somebody enters the command “help”.  What comes out is typically 
hundreds of characters.  All those characters have to be funneled through the “blocking” putchar 
function.  We are stuck doing printing, because terminal_process, which called print, is itself 
now called out of an ISR, and while that ISR is going, nothing can interrupt it.  ISR’s can 
preemptively interrupt things in the main loop, but (on this machine) they cannot interrupt each 
other!  As it happens, the serial port is a higher level interrupt (lower numbered) than the RTC.  
On this machine that means, when interrupts are again enabled, if both an RTC interrupt and an 
RDRF interrupt are pending, the RDRF interrupt gets to go first.  So, let’s suppose that help 
command prints 200 characters.  That takes about 208 msec.  That’s got serious consequences 
for our clock and the stepper.  Something has to be done. 

 
Fix proposal #1:  Enable interrupts: 
 
This is the simplest fix.  Interrupts are inhibited by an ISR because the hardware sets the 

interrupt flag (I) in the Processor Status Word (PSW).  The PSW is a register inside the CPU of 
the microcontroller that has bits to represent whether the most recent instruction resulted in a 
zero (Z), negative (N) or carry (C) as well as a few other things needed for normal code 
execution, especially conditional branches.  Setting I in the PSW inhibits further interrupts.  
Flags are raised, but nobody answers. 

But, we can clear the I bit in the PSW!  As the last thing we do in terminal_process, 
before calling the command callback function, we could enable interrupts.  See the excerpt from 
terminal_process shown below: 

 
      /* Identify command. */ 
      x=find_command(cmd_line+start); 
      /* Command not found. */ 
      if (x == -1) 
      { 
        print("Unknown command!\r\n"); 
      } 
      else 
      { 

  EnableInterrupts; /* enable interrupts */ 
        (*cmds[x]->func)(cmd_line+end+1); 
      } 
      cmd_line_ndx=0; 
      print_prompt(); 
 
 Having done this, the terminal_process no longer enjoys its previously privileged status, 
and can be interrupted just like the main loop.  If the RTC goes off before the printing for the 
“help” command is done, it does so, gets its job done, then exits back into the terminal_process 
called help task to resume printing.  The RTC could go off several times before the print job is 
done.  So, this fixes the problem.  Bu thtere are a couple of additional “howevers” lurking. 
 
 First, suppose someone happened to push or release a pushbutton when the “help’ 
command is printing.  The RTC’s call to “print” will likely be a second, and recursive, call to 
print, and to putchar.  At best, the print about the buttons will be inserted into the middle of the 
print job for “help”.  That’s undesirable.  It’s likely characters may be lost.  Even worse. 
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An additional consequence is that stack usage increases.  Each time an ISR is called, stuff 
about what is happening in the interrupted task has to go on the stack.  Local variables are 
already on the stack; that’s not a problem.  But the Program Counter (PC) that points to the next 
instruction that would have been executed needs to go on the stack, as well as the PSW that’s 
keeping track of carries and zeros and negatives for branching, and the A, H and X registers.  
Figure 5-1 in the SH8 Manual has a diagram.  That’s 5 bytes.  Now, in addition, you have any 
local variables for the ISR and anything that the ISR might call.  If the an ISR is interrupting 
another ISR that has cleared its interrupt inhibit flag, that happens again.  The stack climbs.  This 
machine has only a limited amount of RAM.  Tha stack has to be big enough for a worst case: 
the terminal_process ISR is interrupted at the worst possible time when you are deep inside a 
command callback function that has used print (or worse, printf!). 

 
Worse can happen.  The RTC interrupt calls print too, to respond to switch pushings.  

Suppose we provided the same relief for that ISR as well; if we need to do a print we enable 
interrupts before we do so.  Now, suppose that these print calls get held up – either they are 
inherently too slow, or they are competing with a print job from terminal_process.  The next 
RTC interrupt could be called before the earlier one is finished!  RTC’s should not be reentrant, 
and should not need to be.  If this kind of thing cascades, ISR gets piled on top of ISR on the 
stack until the whole thing wipes out all of memory, and VERY BAD THINGS happen!  (This is 
where you hope the dog goes off and saves you by resetting the machine.) 

 
In general, clearing the interrupt flag before you exit the ISR is a dangerous thing to do, 

and should be considered very, very carefully.  There may be times and places where it makes 
sense.  But look for other alternatives first. 

 
Fix #2:  Make print non-blocking: 
 
Yes!  This is what we’d like to do, but how?  Characters can be sent out only at a limited 

speed as set by the serial port.  How can print return until they have all been sent?  The answer is 
to have the print function stash toe characters somewhere until they are ready to be sent.  That 
allows print to return as soon as it puts the characters somewhere; they can then be sent out at 
leisure.  The place where we put the characters is called a “buffer”. 

 
In effect, the “print” process (which we will call it now, instead of just a task) is broken 

up into two pieces.  There is a process that fills the buffer with characters.  We will think of that 
as the “print” task and still call it a task.  Then there is the process that empties the buffer by 
sending out the individual characters one at a time.  We will be doing this as an exercise (to be 
written up as soon as I can get it done). 

 
The catch is, of course, that the individual characters to be printed have to be stored in a 

buffer until they can be sent out, and that buffer necessarily has to be in RAM.  RAM is limited.  
If someone asks for the “help” command, that may be a few hundred characters.  Is your buffer 
big enough for that?  We have 512 bytes of RAM, but ¼ of that is in zero page (which we could 
use for our global variables).  We need a stack.  How much is left for the buffer?  In practice, you 
just might be able to have a buffer as big as 256 bytes.  (We usually use powers of 2.)  How to 
actually do the buffered print will be put in a separate document. 
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The print task fills characters into the buffer than exist immediately.  It is no longer 
blocking.  So, print calls don’t take significant time, and most of the problems timing problems 
that we were worried about earlier go away.  The process of emptying the print buffer is a 
process that used the serial port TDRE interrupt.  As long as there are characters in the buffer, we 
enable the TDRE interrupt.  Each time it goes off, we stuff another character into the Transmit 
Data Register of the serial port, turning off the TDRE flag until it empties again.  When we pick 
up the last character and sent it the TDRE interrupt is turned off until someone puts more stuff 
into the buffer. 

 
The same concept can be used for other “blocking” tasks.  For example, we wait for the 

ADC to finish converting an analog value before we pick it up to print or do something else.  
Starting the ADC is not synchronous; it is not blocking.  It is waiting for COCO that is 
“blocking”.  Instead of waiting for COCO, we can turn on the interrupt flag when starting the 
ADC, and after having started the conversion, exit.  Then, when the flag goes off signaling that  
the conversion is complete, an ISR picks up the data and does whatever needs to be done with it.  
In effect, this is the same kind of solution as described for printing.  The task is divided into two 
parts, one that starts things and one that finishes the job.  In fact, this kind of strategy can be 
expressed in other ways as well. 

 
Fix #3  Make print non-blocking, but store pointers, not characters: 
 
This method of managing printing uses the same idea as above, but instead of storing the 

individual characters to be printed, the buffer stores pointers to the strings.  This way much less 
RAM is used, just two bytes per character string to be printed.  But, as usual, there’s a catch.  
This method works well for constant strings stored in ROM.  Things like the “help” command 
texts (which are in constant command structures).  But if you use this to print something in 
RAM, it is very, very dangerous.  You can’t print a string in a local variable, because by the time 
you get around to actually printing,. The variable and its contents are gone.  You have a pointer 
to something that no longer exists, and there’s no telling what is stored there now.  You could 
mitigate this by requiring that strings from RAM be from static or global variables, but how are 
you going to ensure that those don’t get changed between when the string is sent to print and 
when the characters actually get sent?  Not simple.  Dangerous even, unless you separate out 
RAM in global memory space for every different string that you might print, and that’s going to 
chew up a lot of RAM. 

 
It’s conceivable that you could use a combination of techniques, with a character buffer 

for variable (RAM) string prints and a pointer buffer for constant (ROM) prints.  But then the 
two print functions have to be carefully integrated so that the buffer emptying process that puts 
the characters into the serial port knows how to do that correctly.  That’s tricky. 

 
Fix #4:  Leave print blocking, but have calls to it made only in the main loop: 
 
This approach requires us to make a rule:  “Never call print out of an ISR!”  That means 

terminal_process needs to be fundamentally changed.  Instead of calling command callback 
functions itself, it needs to put commands to be called somewhere.  Then, another process we’ll 
call the “dispatcher”, called out of the main loop, actually does the call.  In between?  A buffer.  



 12 

Assuming that we would only be invoking one command at a time, the buffer need only be a 
pointer in global memory to the next command needing to be executed.  And, a string for the 
parameter string to be passed to that command.  (Conceivably the current command buffer could 
just be made a global accessible directly to command callback functions.)  The presence of the 
command needing to be executed would be signaled by a nonzero pointer.  When the command 
callback is executed, the pointer is changed back to being a zero. 

 
The obvious problem we are back to is that if we are in the middle of those long 

expensive processes we don’t want to break up (the led blinking), the command won’t actually 
execute until we get to the next pass of the main loop.  But unlike the previous situation, we will 
be able to type in characters rapidly since terminal process is not blocked, only the execution of 
the command callback function. 

 
Similar things can be done for other kinds of tasks.  For example, the pushbuttons.  

Instead of printing, the ISR would signal by setting a few characters or a flag indicating the 
buttons were changed and a new remark needed to be printed.  Then, a task would be initiated 
out of the main loop to do the actual print. 

 
Conclusion: 
 Managing multitasking is a complicated business, especially in the presence of  real time 
constraints, limited memory resources, and inherently slow or blocking tasks and processes.  It is 
hoped that this discussion and the attendant exercises will give you a practical appreciation for 
these issues.  This certainly is not a comprehensive treatment of the topic.  In practice, for critical 
real time computer operations, assuming adequately capable processors, an RTOS is used to give 
guaranteed performance.  Hopefully this material will help give an appreciation for that they 
have to do.  Many topics have not been covered here, with perhaps “scheduling” in general 
among the most important. 


