EE247 Programming for Embedded Systems Project #2 Spring 2016

“Terminal command” Program
Expected to be working in two weeks (Feb23, 2016)

The goal of this project is to use the serial port to the Windows PC (running
Hyperterminal) in order to control the microcontroller in doing a variety of tasks. We
would like to be able to control a stepper motor, but choose the speed and direction by
commands given through the terminal facility, as well as blink the LED’s on and off, and
sample the potentiometer or photosensor through the A/D converter. The student is
invited to include any other features he believes would be of interest or entertaining.

The “terminal” program is a unit of code consisting of the “hcc_terminal.h” and
“hcc_terminal.c” files. In addition, use of the terminal will require that you include some
other files, SCI_Functions.c and hcc_types.h, and possibly others. You will need three
functions that allow terminal to communicate with the serial port (they are in
SCI_Functions.c). You need to pass these functions to the terminal using the
“terminal_init” function when you initialize the terminal before installing commands and
entering the main loop.

int putch(char c¢) // sends a single character. The call is a success if the same
character is returned. If minus 1 is returned, the attempt failed, most likely
because the “TDRE” bit (Transmit Data Register Empty) was not asserted.
It is acceptable for this project to simply do a busy wait for TDRE and
always succeed.

int getch(void) // gets a single character (as an int) from the serial port.
(Getch should return “-1” to indicate that there was no character to be
picked up. Normally this should not happen if you check RDRF (Receive
data Register Full) before calling this function.

int kbhit(void) // checks RDRF to see if there is a character to be picked up.
Returns “TRUE” (preferably a ““1”’) if RDRF is one, and “FALSE” if
TDRE is zero.

Sample code for using the terminal can be found in the example main program
distributed earlier. For example code for getch and putch, you can also look in the
Codewarrior sample project for the HCSO8SHS8 demo board (choose that from the menu
when you start Codewarrior.) It’s on the CD that came with the board (mayu be missing
in some boxes). The demo project also includes code for initializing the serial port and
the clock, both needed. Part of the purpose for this project is to get used to using files. I
recommend you take “SCI_Functions.c” and “SCI_Functions.c” and copy those files into
your project, modifying them as needed, for examplem by adding kbhit() and changing
the functions to return integers rather than characters to be compatible with the terminal
program. (I did that in the copies I distributed.) Copy the terminal files into your project
too, and possibly also some other utilities. (The utils.h and utils.c files have code that
converts between strings and numbers.)

We’ve looked at al lot of theis stuff in the class.



Examples of commands we want might include:

‘start xx” This command starts the stepper motor at a default speed, or makes
the speed xx (rpm?) as a parameter is given. Decide what units to use for
speed.

‘speed xx’ This command changes speed to a given value.

‘stop’ This command stops the stepper motor

‘reverse’ This command reverses the stepper motor

‘speedpot’ Take the stepper speed input from the potentiometer (cancelled by
‘speed’ or ‘start’ or ‘stop’ commands)

‘pot’ Give the value of the potentiometer

‘photo’ Give the value of the photosensor

‘LED xx’ Turn on or off the two LEDs depending on xx. Maybe 01 = off/on

‘Buttons’ Print to the screen the state of the two buttons

What you should not try to do for this project: Don’t try to use slower speeds for
the serial port. The demo program uses 115200 bps, and that should be fine. If you try to
go too slow, such as the Hyperterminal default of 2400 bps or the commonly used 9600
bps, you may run into problems because the functions “print” and others may hang in a
busy-wait state, preventing your microcontroller from doing other things. That’s because
we are using busy-waits instead of interrupts. It’s also likely that your stepper will be
sporadic when communications is going on for the same reason. (Be sure to feed the dog
inside any busy-wait loop.) You should step yopur motor along in the main program,
NOT in any of the commands. The commands should just change the speed and/or
direction. We will talk about use interrupts as a way of dealing with these and other
timing issues later. You should not try to use interrupts yet. We are also not going to try
to use the clock at this time. If you want to include a clock in your project as an extra, go
ahead. But make sure all the essentials are working first.

You DON’T have to actually run a stepper motor. That’s optional. You just have
to have two outputs that show the appropriate waveforms seen on an oscilloscope.

Your report is to be informal. It is to consist of an abstract (a summary paragraph
which summarizes the entire report), a copy of your C program (include appropriate
comments; include both header and c code files), your calculations or observations to
show motor speeds for different settings, and your observations of how well the various
commands work. Include a schematic showing your stepper circuit. (Copying in what
you had from project #1 is OK.) Finally, include a conclusions paragraph which should
include a statement saying whether it worked or not, and if not, why not and describing
what seems to be wrong.

Looking ahead: Project number three is going to be mostly this same stuff, but
we are going to include a clock, and we will use interrupts for the clock, the serial port,
and maybe some other things like the A/D converter. We will also use some of the
sophisticated timer facilities to run the stepper instead of using a loop under program
control. We’ll also slow down the serial port to 9600 bps or 4800 bps. Project number 4
is going to be your idea; be thinking of neat things to do.



