
 1

EE247: Buffered Printing
March 24, 2020

Background:
 This is a laboratory exercise intended to follow-up previous material in the documents
“EE247 Tutorial: Interrupts and Multitasking: The Problem” and “EE247: On Multitasking.”
The first of those documents develops a demonstration of the problem seen when printing
(slowly) while trying to do other processing. The basic problem is that “print” is called out of an
Interrupt Service Routine, and is a “blocking” version of print. So, nothing else can happen on
the computer while a print is underway. The second of those two documents discusses the
problem further, and outlines some of the issues attendant to “multi-tasking.” This document
assumes familiarity with those two preceding. This document develops one solution to the
problem: a buffered print. The print function is no longer blocking. Calling it dumps characters
into a buffer, and those characters are sent out by another process that empties the buffer. It is
expected that students will follow this exercise step by step with their microcontrollers
(MC9S08SH8 on its demo board, supported by the CodeWarrior for Microcontrollers Integrated
Development Environment (IDE).

A Circular Buffer:
 The buffer we want needs to act like a “First In First Out” (FIFO) memory.

 The problem is how to implement the buffer. There are
three elements. One is the buffer itself. Then we need a way to
load it. We’ll call that the “print” function. (That is, the new, non-
blocking version of the print function.) The second is the function
that empties the buffer by sending out the characters, which will
turn out to be an Interrupt Service Routine (ISR).
 We’ll start with the buffer itself. What is it? Whatever it is,
it has to hold a bunch of characters. It also has to be made out of
RAM, since that’s what our computer memory actually is. (We
can’t use ROM; anything written to ROM falls on the floor.) So,
we’ll set aside a “block” of memory. It is convenient to use sizes
that are a power of 2, so let’s make it 64 bytes.

At any given time the number of bytes (characters) can vary.
We can use two indexes, called bufStart and bufEnd, to keep track
of where the current contents of the buffer are. A diagram is shown
at right. Initially, the buffer would be empty, with both bufStart and
bufEnd both zero, pointing to the first (and next available) empty
space in the buffer. Suppose the main process then prints the string
“Hello!” What the print function would do is put the contents of
that string, one byte at a time, into the buffer. At the end of doing
so, it looks as shown at right.

characters
in (calls
to “print”)

FIFO
memory

characters
out (into

Transmit Data
Register) char bufFer[64]

bufStart
bufEnd

0
1
2
3
4
5
6
7
8
.
.
.
.
62
63

char bufFer[64]
bufStart

bufEnd

0
1
2
3
4
5
6
7
8
.
.
.
.
62
63

‘H’
‘e’
‘l’
‘l’
‘o’
‘\0’

 2

What would happen next is the process to empty the buffer would start up, and the first
few characters would be sent out. The bufStart index would start to move such that it begins to
catch up to bufEnd. If nothing is printed, the bufStart pointer eventually catches up with bufEnd.
When the two are equal, the print buffer is empty.

But let’s suppose something else got loaded into the buffer
before that happens. Say, “sw1=0”. Then, ‘s’ would follow the
‘\0’ in the buffer element pointed to by bufEnd, and bufEnd would
move down one for each character as they are loaded.

What makes this a “circular” buffer is that, when bufEnd
reaches 64, just beyond the last word of the buffer (at 63) it is reset
to 0. So, it never really comes to the end of the buffer. The buffer
is a circle of bytes 64 characters long. The same thing is done with
bufStart. So, bufStart continues to chase bufEnd as long as there
are characters in the buffer. The figure at right shows the situation
where bufEnd has rolled around to the top but bufStart has not.

Data Structures – The Buffer:
 So, to build the buffer, what we need are a 64 byte (character) buffer, and two “indexes”.
These all need to be globals, since they have to be accessible from “print” or the ISR that
empties the buffer, and the contents need to be persistent.

/* Globals to support buffered print */
char bufStart=0,
char bufEnd=0;
char bufFer[64];

But, where should the declaration / definition of these variables be? We are going to
need to modify the “print” function which is currently in hcc_terminal.c. If we are replacing it
with a print function that will use the same name, it makes sense to modify the file
hcc_terminal.c. (Be sure to archive the existing file for future reference when we are done with
this exercise!) So, we will put these new globals into hcc_terminal.c after the other globals
there. We will also comment out the existing print function and replace it with out new one.

The Print Function:
 Now we need a function to print that, instead of callinbg getchar, will simply load up the
buffer starting at the current index value of bufEnd, and advancing forward (in a circular
manner) through the buffer. We’ll restructure the existing print function to do so.

void print(char *s){
 while(*s)bufFer[(bufEnd++)&63]=*(s++); /* put string into the buffer */
 SCIC2_TIE=1; } /* enable TDRE interrupt */

Notice the use of “++” within the statement. This is called a “side effect.” The statement
not only modifies the buffer, it also modifies s and bufEnd, adding one to each after the bufFer is
written. Tricky! When people are using side effects, especially in a statement that does looping
(as here) if can be quite difficult to figure out what is going on. The &63 sets 64 back to 0. In
fact, this is so clever it doesn’t actually work! Hard to figure out why!

OK, let’s rewrite it to be a little less opaque:

char bufFer[64]

bufStart

bufEnd

0
1
2
3
4
5
6
7
8
.
.
.
.
62
63

‘o’
‘d’
‘b’
‘y’
‘e’
‘\0’

‘G’
‘o’

 3

void print(char *s){
 while(*s != 0){
 bufFer[bufEnd]=*s; /* put string into the buffer */
 s++; /* increment string pointer */
 bufEnd++; /* increment buffer end pointer */
 if(bufEnd>=64)bufEnd=0; /* make buffer circular */
 }
 SCIC2_TIE=1; /* enable TDRE interrupt *
}

Emptying the Buffer:

You will noticed that we turned on the interrupt flag just before the print function exited.
That’s going to immediately trigger the ISR (unless it was already busy sending out characters
when print was called). The ISR needs to send characters until the print buffer is empty. But, it
only has to send one as ta time. it does not have to loop. It’s important to read the details about
the TDRE flag in the manual. How do we turn it off? After the ISR gets called, we need to turn
that flag off. It will set itself again afterwards when the transmit buffer is again empty, but that
will cause a different invocation of the ISR. Each ISR call only needs to handle one character.
Doing that is fairly straightforward:

interrupt 18 void tdre_isr(void){
 char c=SCIS1; /* needed to clear TDRE. NOT SCIS1_TDRE, but whole reg! */
 SCID=buffer[bufStart++]; /* send data and clear TDRE */
 if(bufStart>=64)bufStart=0;
 if(bufStart==bufEnd)SCIC2_TIE=0; /* turn off int if empty */
}

 Both the print function and the ISR really should not be in hcc_terminal because
hcc_terminal does not have an include for the MC9S08SH8 registers. It is meant to be
“generic”, not caring what processor is being used. Indeed, hcc_terminal actually comes from a
suite of files used with demo programs for the MC9S09JM60, a version of this same family that
had a USB port, with which hcc_terminal was used. To be able to compile both of these
functions we need (earlier):

#include “MC9S08SH9.h” /* needed to use SCIC2_TIE, SCID */

Run it!
 With this, it ought to work. Compile and debug (download) and start it running with
PuTTY up. You should see the welcome message appear. “led” should work. “adc 1” should
return something to the screen for the value of the pot. Hurray! It works. Now try the “help”
command. Uh oh. Mine just printed “ 1 for pot / 2 for photo”. What happened? You could try
setting breakpoints and watch print and the isr running, but then you might not see what
happened because debugging one step at a time gives the serial port plenty of time to keep up
with print. At full speed, the isr can’t keep up. The print buffer overflows. More precisely,
bufStart overtakes and passes bufEnd! 64 characters, most of the “help” message, is lost.
 So, what do we do? Make the buffer bigger! I cranked it up to 128. But, the same thing
happens! It seems I had been overrunning the buffer twice! We could go up to 256, but we need
to make bufStart and bufEnd unsigned integers instead of chars if we do that. Now I get a
different error: I run out of RAM! Finally, with a buffer of 192 characters, it worked. Try it!

