
	 1	

Introduction	to	Programming	in	C	for	EGR140	Computer	Utilization	in	Engineering	

	 Most	of	the	work	done	in	the	earlier	parts	of	the	course	use	MATLAB	(Matrix	
Laboratory)	as	an	environment	within	which	one	can	do	a	variety	of	things	ranging	
from	calculations	similar	to	a	calculator,	to	writing	programs,	to	executing	library	
packages	to	do	elaborate	image	processing,	modeling,	or	simulations.		The	
prerequisite	for	doing	all	this	is	having	a	PC	running	MATLAB.		Buying	a	PC	is	no	
longer	the	big	financial	challenge	it	once	was,	but	MATLAB	is	expensive.		(As	a	
student	you	can	get	a	good	deal,	but	licenses	once	you	graduate	are	expensive,	
perhaps	even	more	than	the	computer.)	

	 An	alternative	to	doing	engineering	analysis	in	MATLAB	is	to	do	so	using	a	
general	purpose	programming	language.		Often	compilers	are	either	free	or	are	
much	less	expensive	than	MATLAB.		Furthermore,	a	general	purpose	programming	
language	can	do	things	that	are	beyond	what	MATLAB	is	intended	to	do,	such	as	text	
handling.		(You	can	probably	do	text	handling	in	MATLAB	but	it	would	be	a	bit	
unnatural,	since	the	moist	basic	form	of	data	is	the	real	number.)	

	 To	explore	the	use	of	a	general	purpose	programming	language,	we	will	start	
with	the	language	"C".		You	perhaps	do	not	hear	C	mentioned	very	often,	since	
programmers	more	commonly	use	the	elaboration	of	C	called	"C++".		However,	C	is	
often	the	better	choice	for	problems	of	mathematical	analysis.		It	is	simpler	and	
easier	to	understand.		C++	is	the	better	choice	for	applications	featuring	mouse	
clicks,	icons,	buttons,	and	other	fancy	user	interface	features.	

	 We	will	use	the	"Integrated	Development	Environment"	(IDE)	called	
"Microsoft	Visual	Studio	2008".		This	program	is	not	free,	but	similar	products	can	
be	found	that	are	free.		Visual	Studio	2008	is	available	for	free	to	students.		If	you	are	
programming	a	Mac,	the	IDE	"XCode"	for	that	platform	is	free.		If	you	are	
programming	microcontrollers,	the	Codewarrior	for	Microcontrollers	IDE	is	
available	for	free	for	configurations	up	to	a	certain	size.	

	 What	an	IDE	is	and	what	it	does	is	perhaps	best	illustrated	by	example.		
Follow	the	directions	below:	

1.		Log	onto	a	Windows	(XP	in	the	SLC216	lab)	computer,	and	start	up	Microsoft	
Visual	Studio	2008.		When	it	comes	up,	there	are	several	daughter	windows	
displaying	various	things	including	news,	getting	started	tutorials,	and	stuff	like	
that.		Ignore	all	that.		You	can	close	the	news	(Developer	Center)	and	related	clutter	
window	by	clicking	the	small	black	on	grey	"X"	in	the	upper	right	corner	(not	the	red	
one.	

2.		On	the	File	menu,	choose	"New"	and	then	"Project".		When	you	release,	a	series	of	
windows	appear	which	guide	you	through	creating	the	new	project.		

3.	The	first	window	allows	us	to	choose	what	type	of	project.		We	want	the	simplest	
possible	thing	we	can	do	to	start.		Under	the	"Project	Types"	list	select	"Visual	C++"	
and	under	that	Win32.		(We	are	going	to	be	content	to	do	a	32	bit		address	word	

	 2	

length	project.)		Now,	another	choice	option	flashes	up:	what	kind	of	Win32	project?		
There	are	a	couple	of	"Templates"	we	can	choose	from.		Again	going	for	simplicity,	
we	choose	"Win32	Console	Application".		That	means	all	of	our	interactions	with	the	
application	will	take	place	in	text	in	a	dedicated	"console"	window.		We	also	need	to	
name	the	application	(Type	in	"Howdy")	and	tell	Visual	Studio	where	you	want	it.		At	
this	point	you	may	want	to	use	your	H	drive	or	insert	your	thumb	drive	and	use	the	
browser	to	point	to	it.		(The	default	is	C:\Documents	and	Settings\(?Your	user	
name?)\My	Documents\Visual	Studio	2008\Projects.		That	way	it	stays	on	the	
computer	and	you	can't	carry	it	with	you	when	you	leave,	unless	you	copy	the	folder	
to	your	drive.)		Leave	checked	the	box	to	create	a	directory	(named	Howdy)	for	the	
"Solution."		(A	"solution"	is	a	package	of	related	applications.		We	will	have	only	the	
one	application	"Howdy"	in	our	solution.)		Now	click	"OK".	

4.		Now	you	get	a	window	"Welcome	to	the	Win32	Application	Wizard."		Just	hit	
"Finnish".		Visual	studio	now	creates	an	"empty"	project	that	does	nothing.		When	it	
finishes,	what	you	see	is"	

	

	 a.		In	the	largest	window,	a	file	named	"Howdy.cpp"	that	contains	the	"source	
code",	the	executable	statements	that	do	what	the	programmer	wants	to	have	
happen.		More	about	that	soon.	

	 3	

	 b.		On	the	left,	the	"Solution	Explorer"	window	that	is	a	diagram	of	all	the	
various	stuff	that	it	takes	to	make	this	code	run	on	a	Windows	machine.		That	
includes	two	"Source"	files,	Howdy.cpp	and	stdafx.cpp,	and	two	"header"	files,	stdafx	
and	targetver.h.	

	 c.		There	are	lots	of	other	buttons	and	icons	and	a	command	window	at	the	
bottom,	but	we'll	talk	about	those	when	we	need	to.	

5.		Now,	we	will	create	an	"empty"	project	that	does	nothing.		We	want	to	compile	
and	run	this	project	as	it	is	right	now.		Under	the	"Build"	menu,	select	and	release	on	
"Build	Solution".		You	will	see	an	"Output"	window	appear	that	will	describe	the	
steps	taken	to	"build"	the	application.		At	the	end	you	should	see	" Build: 1 succeeded,
0 failed, 0 up-to-date, 0 skipped".		That	means	it	got	built.	

6.		Now	let's	run	it.		Find	where	the	"Howdy"	folder	is	(where	you	said	to	put	it)	and	
inside,	look	inside	the	"Debug"	folder	for	"Howdy.exe".		That	is	your	application.		
Double	click	on	it	to	run	it.		What	you	will	see	is	a	window	very	briefly	flash	open	
and	then	disappear.		What	has	happened	is	the	application	does	nothing	except	
close	itself.		It	is,	after	all,	empty.		We	have	not	yet	added	instructions	to	do	anything.		
(You	could	also	run	it	in	the	"debugger"	by	clicking	on	the	green	arrow	on	the	
commkand	bar.)	

7.		So,	now	go	back	to	your	Visual	Studio	main	window.		We	will	now	modify	the	
main	application	source	file	Howdy.cpp	as	follows	iding	the	IDE	editor.:	

	 a.		Add	two	new	lines	before	the	"return	0:"	statement:	

	 printf("Howdy!\n");	

	 while(getchar()==0);	

	 After	doing	that,	the	text	of	Howdy.cpp	should	look	like	this:	

// Howdy.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{
 printf("Howdy!\n");
 while(getchar()==0);
 return 0;
}

	 b.		Now	"make"	your	application	again	using	the	"Build"	/	"Build	Solution"	
menu	choice.	

8.		Run	"Howdy.exe"	by	double	clicking	on	it	or	clicking	the	green	"debug"	icon.		
Here's	what	you	should	see:	

	 4	

	

9.		Quit	by	hitting	return.		The	application	will	instantly	exit.	

	 So,	what	have	you	done?		You	have	created	an	application	that	interacts	with	
the	user	using	text	(a	console	window)	that	simply	types	out	a	message,	then	waits	
for	the	user	to	enter	anything	and	hit	return.		Let's	see	how	it	works.		There	is	a	
"main	program"	that	can	accept	some	incoming	stuff	that	we	will	ignore.		The	
statement	that	defines	the	beginning	of	our	main	program	is:	

int __tmain(int argc, _TCHAR* argv[])

	 The	main	program	is	actually	just	another	function,	"_tmain"	(terminal	
version	of	main).		Data	that	can	be	passed	into	it	are	an	integer	named	"argc"	and	an	
array	of	character	srtings	(called	T_CHAR's)	named	argv.		We	don't	have	to	worry	
about	any	of	that	because	we	don't	use	any	of	it.		Our	main	program,	though,	does	
have	to	return	an	integer	(int)	when	it	finishes.		When	we	had	the	"empty"	program,	
the	only	executable	statement	inside	main	(That	is,	in	between	the	two	braces	"{"	
and	"}"	was	"return	0;".		What	that	does	is	exit	and	return	(to	whoever	called	main)	
the	value	0.		(Returning	out	of	main	with	a	value	other	than	0	means	that	an	error	
occurred	and	the	program	is	exiting	abnormally.)	

	 Our	modification	to	main	included	first	a	statement	to	print	a	message	to	the	
screen.		"printf"	is	a	function	defined	in	the	standard	input/output	library	for	
printing	to	the	console.		Inside	the	parentheses	we	put	a	"string"	of	characters	to	be	
printed.		The	"\n"	means	to	do	a	"new	line"	operation.		Any	text	that	follows	will	be	
on	a	new	line.		So,	as	a	result	of	this	statement	the	message	"Howdy!"	appears	in	our	
console	window.	

	 The	other	statement	we	added,	"while(getchar());"	uses	a	control	structure	
called	a	"while"	loop.		That	is,	we	wait	until	whatever	is	inside	the	parentheses	is	
"true"	(which	in	C	means	nonzero).		Inside	the	while	we	call	the	function	"getchar	
(passing	no	information	into	it).		The	function	getchar()	obtains	a	character	of	input	

	 5	

from	the	screen.		Anything	that	comes	back	other	than	a	zero	causes	us	to	get	out	of	
the	"while"	and	move	on	to	the	next	statement,	the	return.	

	 In	summary,	this	application	opens	up	a	console	window,	it	prints	"Howdy!"	
and	then	waits	for	the	user	to	hit	return,	at	which	time	it	quits.	

	 Now,	let's	modify	the	program	to	do	something	more	interesting.		We'll	keep	
the	"Howdy"	and	the	exit,	but	in	between	we'll	have	it	calculate	a	dot	product	of	two	
vectors.		We	will	go	back	in	and	edit	the	main	function	as	shown	below:	

// Howdy.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

float A[]={1,2,3};
float B[]={4,5,6};
int _tmain(int argc, _TCHAR* argv[])
{
 int i;
 float dot=0.;

 printf("Howdy!\n");

 for(i=0;i<3;i++){
 dot=dot+A[i]*B[i];}

 printf("The dot product is %f\n",dot);

 while(getchar()==0);
 return 0;
}

	 The	statement	"float	A[]={1,2,3};"	causes	there	to	be	a	global	variable	named	
"A"	that	is	a	vector	(that's	what	the	[]	means)	of	three	floating	point	(32	bit	
representation	of	real	numbers)	values,	and		the	vector	initially	has	the	value	[1,2,3].		
(Even	though	you	don't	see	decimal	points,	the	statement	says	they	are	floats,	so	
floats	they	will	be.)		There's	a	similar	statement	for	the	vector	B.		The	elements	of	
vector	A	are	A[0]	(which	has	the	value	1),	A[1],	and	A[2].		Notice	that	the	indexing	
starts	with	0,	not	1.		That's	a	difference	between	C	and	many	other	languages,	
including	MATLAB	and	FORTRAN,	which	start	indexing	vectors	with	1,	not	0.	

	 Inside	main	we	need	an	integer	to	use	to	count	which	element	of	the	vector	
we	are	working	on.		That	can	to	be	an	integer	variable	rather	than	a	float.		(Under	
Windows	integers	are	by	default	32	bits;	if	you	want	a	16	bit	integer	ask	for	a	
"short".		On	some	machines	an	intis	only	16	bits.		So	if	it	matters,	it's	safer	to	ask	for	
a	"long"	if	you	really	want	values	up	to	2^31.		Use	"int"	if	it	doesn't	matter,	or	to	be	
compatible	with	library	functions.)		We	also	need	a	float	in	order	to	accumulate	our	
dot	product.		Notice	that	by	putting	"float	dot=0."	inside	main	it	is	"local"	and	if	we	
had	other	functions	they	could	see	and	use	A	and	B	(which	are	global	variables)	but	
not	"dot"	which	is	local	to	main.		We	are	not	getting	that	fancy	(yet).	

	 6	

	 The	"for"	statement	says	start	by	making	i	equal	to	0.		Then	check	to	see	if	i	is	
less	than	3.		If	it	isn't	(that	is,	if	it	is	3	or	more)	then	exit.		Otherwise,	do	the	stuff	
within	the	braces.		Once	the	stuff	is	in	the	braces	is	done,	add	one	to	i.		In	C,	"++"	
means	add	one.		Then	see	if	it	is	less	than	three.		Keep	going	until	you	exit.	

	 So,	the	stuff	inside	the	"for	loop"	gets	executed	three	times,	once	for	i=0,	then	
for	i=1,	then	for	i=2.		The	first	pass	A[0]	is	multiplied	by	B[0]	and	the	product	added	
to	"dot"	(which	initially	had	the	value	0).		Then,	A[1]	is	multiplied	by	B[1]	and	that	
product	added	to	dot.		Finally,	the	product	of	the	third	elements	of	the	two	vectors	is	
added	to	dot.		The	result	is	the	dot	product.		It	should	be	1*4+2*5+3*6	=	32.	

	 The	following	print	not	only	prints	text	but	the	"%f"	means	to	print	out	a	
floating	point	number,	"dot"	to	be	specific.		So,	this	statement	should	print	our	
answer	to	the	console.	

	 So,	now	"make"	the	application	and	execute	it.		You	should	get:	

	

	 Yes,	32	is	the	right	answer.	

	 Now,	there	are	lots	of	things	that	could	be	done	to	improve	the	program,	but	
hopefully	this	example	gets	across	several	important	points:	

1.		You	can	take	this	"Howdy.exe"	file	and	put	it	on	any	PC	and	run	it.		You	don't	need	
Visual	Studio	2008	to	do	so.		That	was	just	a	development	tool.	

2.		A	computer	does	one	simple	thing	at	a	time.		We	didn't	simultaneously	multiply	
all	the	elements	of	A	to	those	of	B.		We	had	to	do	them	one	at	a	time.		MATLAB	has	to	
do	the	same	thing,	but	it	gives	the	user	the	illusion	that	it	is	all	happening	
simultaneously	and	instantly,	and	that	the	computer	is	really	operating	on	vectors,	
not	just	individual	numbers.		(Modern	higher	end	computers	do	have	some	organic	
vector	processing	capability,	but	we	are	not	going	to	get	into	all	that.		It	gets	used	
mostly	forr	graphics	and	such.)	

3.		Even	though	we	were	limiting	ourselves	to	"C"	statements,	the	compiler	(and	
IDE)	are	actually	C++	tools.		We	could	have	used	C++	language	constructs	if	we	had	
wanted	to.		To	do	a	console	application	under	Windows	there	is	a	lot	of	C++	stuff	
under	the	hood	(attached	through	"stdafx")	that	we	don't	want	to	have	to	look	at.		If	
you	want	to	do	something	more	complicated	than	a	console	application,	something	
with	pointing	and	clicking,	you	have	to	dive	into	C++	under	Windows.		That	can	get	
involved.	

	 7	

	 OK,	so	it's	possible	to	write	a	C	program	(using	the	C++	facilities	of	the	Visual	
Studio	IDE)	and	make	it	work.		How	does	it	work?		There	are	a	couple	of	ways	this	
question	could	be	answered.		One	answer	is,	"I	don't	care.		Just	so	it	works	and	gives	
me	the	answer	I	want."		That	is	like	being	content	to	flip	on	a	light	switch	and	not	
caring	how	electricity	works,	or	where	it	comes	from.		Or	owning	an	automobile	and	
not	caring	what	the	"motor"	is	or	how	it	works.		It	is	possible	to	go	through	life	not	
understanding	or	caring	about	some	of	the	things	that	you	interact	with	routinely.		
Most	engineers,	though,	are	more	curious.		Maybe	there	isn't	enough	time	and	effort	
to	understand,	for	example,	how	cellular	biology	works	in	detail	or	the	nuclear	
reactions	inside	the	sun.		We	take	advantage	of	both	routinely	without	a	detailed	
understanding.		But	for	an	engineer,	the	computer	is	both	an	essential	tool	and	a	
component	of	many	systems.		So,	I'm	going	to	assume	interest.	

	 Within	Visual	Studio	2008,	we	have	an	application	called	a	"debugger"	that	
has	been	integrated	in	with	the	other	applications	in	the	package,	to	help	with	
understanding	what	is	going	on	"under	the	hood".		Just	as	someone	seeking	to	
understand	what	is	going	on	inside	an	automobile	engine	might	use	a	timing	light,	a	
compression	gauge,	or	a	dynamometer,	the	debugger	provides	a	window	into	the	
internals	of	a	computer	program,	in	our	case	the	application	"Howdy".		So,	what	
follows	is	a	description	of	how	we	can	use	the	debugger	to	see	what	is	inside	the	
Application	and	how	it	works.	

	 If	we	just	click	the	green	button	to	debug	(or	select	"Start	Debugging"	on	the	
Debug	menu)	we	start	the	program	running,	and	it	completes	everything	prior	to	
getting	the	signal	to	exit.		We	want	to	go	more	slowly.		So,	we	start	out	by	setting	a	
"breakpoint".		A	computer	runs	by	executing	"instructions"	statements	one	after	
another.		Each	"statement"	in	our	source	code	(a	line	ending	with	";")	has	been	
converted	by	the	compiler	(another	component	of	the	IDE)	into	several	instructions	
that	the	machine	understands.		What	we	want	to	do	is	stop	the	program	in	the	
middle	of	execution	so	we	can	look	around	and	see	what	is	going	on.		A	"breakpoint"	
is	how	we	tell	it	where	to	stop.	

	 With	the	source	file	"Howdy.cpp"	still	open,	click	to	the	left	of	the	statement	
"printf("Howdy!\n");".		The	statement	will	be	highlighted	(selected).			

	

	 8	

Now	click	in	the	grey	left	border	of	the	window.		A	red	spot	will	appear	to	indicate	a	
breakpoint	at	this	statement.	

	

	 Now,	start	debugging	by	clicking	the	green	arrow	or	pulling	down	and	
releasing	"Start	Debugging".		Now	the	program	stops	just	after	the	console	window	
comes	up.		(There	is	a	flashing	cursor;	that's	the	operating	system	waiting	for	
input.):	

	

Back	in	the	Visual	Studio	window,	the	program	is	stopped	at	the	printf	statement,	as	
seen	by	the	yellow	arrow	at	the	breakpoint.		In	a	couple	of	other	windows	at	the	
bottom,	we	can	see	(on	the	left)	the	variables	"dot"	and	"i".		On	the	right	we	can	see	
the	"call	stack"	that	tells	us	what	function	we	are	in.		We	are	in	Howdy.exe!wmain(.),	
the	main	program.		There	are	a	couple	of	functions	higher	up	which	are	Windows	
C++	code	that	get	our	console	function	started.		We	aren't	going	to	go	there.	

	 The	variables	dot	and	i	are	of	interest.		"dot"	has	the	value	0.000.		The	
debugger	knows	it	is	of	type	"float"	so	it	is	showing	the	floating	point	value.		If	you	
look	at	the	source	code,	dot	was	initialized	with	the	value	zero	given,	which	is	what	
we	are	seeing	here.		The	integer	"i"	is	a	different	matter.		Whan	it	was	called	into	
being	by	"int	i;",	no	value	was	assigned.		So	the	value	of	i	is	"uninitialized."		There	is	a	

	 9	

particular	spot	in	the	memory	of	the	computer	where	i	exists,	but	it	now	contains	
random	garbage,	the	bit	pattern	that	happened	to	be	there	before	i	was	created.		In	
my	run	the	value	is	-858993460.		But	on	any	given	occasion	it	might	be	different.		
What	we	can't	see	is	exactly	where	in	memory	dot	and	i	are	stored	(their	adresses);	
the	debugger	doesn't	tell	us	that	(and	apparently	won't;	some	other	debuggers	will).	

	

Now,	what	we	want	to	do	is	watch	our	program	execute	one	little	step	at	a	time.		Got	
to	the	"Debug"	nenu	and	pull	down	the	menu,	releasing	on	"step	over".		What	will	
happen	is	that	the	statement	we	are	stopped	on	will	be	executed.		If	we	had	chosen	
"Step	into"	instead,	we	would	have	plunged	into	the	dark	abyss	of	how	"printf"	
works.		We	don't	want	that.		If	we	had	chosen	"Step	out"	we	would	have	completed	
the	function	we	are	in	(the	main	program)	before	stopping	again,	and	that's	more	
than	we	want	to	do	right	now.		After	doing	this	step	we	are	stopped	on	the	"for"	
statement,	and	"Howdy!"	has	appeared	on	the	console	window.		Our	program	has	
done	that	one	step.		But	it	has	not	started	the	"for"	statement,	so	i	remains	
ininitialized.	

	 Step	over	once	more.		(Notice	there	are	three	buttons	on	the	tool	bar	for	
"step	into",	"step	over",	and	"step	out"	that	you	can	use	instead	of	the	menu.).		Notice	
the	changes	in	the	list	of	variables!		Now	"i"	has	the	value	0.		Notice	that	the	zero	is	
red,	to	indicate	that	the	value	just	changed.		Notice	also	that	the	variables	A,	A[i],	B,	

	 10	

and	B[i]	have	been	added,	since	now	we	are	at	a	statement	where	these	matter.		
Furthermore,	we	can	see	their	values.	

	

Since	i	is	zero,	then	A[i]	is	A[0]	and	has	the	value	1.0.		Similarly	B[i]	is	4.0.		But	what	
is	A?		In	the	particular	execution	I'm	debugging	as	I	write	this,	A	has	the	value	
0x00417000.		It	is	a	float	*.		That	means	it	is	a	pointer	to	a	float	(a	floating	point	
variable).		So,	in	C	the	variable	A	is	the	address	in	memory	where	the	elements	of	the	
vector	A	are	stored.		We	are	seeing	a	detail	normally	hidden	from	view.		In	MATLAB	
we	never	can	see	where	anything	is	actually	stored	in	the	computer.		Here	we	can.		
We	can	also	see	the	address	of	the	elements	of	B.		They	are	at	0x0041700c.	

	 Here,	we	need	to	take	a	break	and	explain	this	number,	this	address	in	
memory,	that	contains	the	letter	"c".		The	prefix	"0x"	means	that	the	value	is	givenb	
in	hexadecimal,	that	is,	base	16,	instead	of	your	familiar	base	10.		That	allows	us	to	
represent	very	big	binary	numbers	compactly.		For	each	group	of	4	bits	in	a	binary	
number,	we	have	16	combinations,	0,1,2,	...	9,	a,	b,	c,	d,	e,	f.		We	use	the	characters	a	
to	f	for	vlaues	10	to	15	for	which	decimal	does	not	have	any	digits.		So,	the	address	
of	the	vector	B	is	actually	(in	binary):	

0x0041700c		=	0000		0000		0100		0001		0111		0000		0000		1100	(binary)	

	 11	

	 Notice	that	even	though	we	are	executing	a	"Win32"	program,	the	addresses	
in	the	macine	are	64	bits.		In	old	computers	from	the	1970's	and	earlier	that	had	
"front	panels"	we	could	actually	peek	inside	the	memory	at	any	given	address	and	
see	what	is	there.		Those	hardware	debugging	techniques	have	been	repl;aced	by	
softweare	debuggers	like	this	one,	which	is	why	computers	no	longer	have	a	"front	
panel"	with	lots	of	little	lights	and	switches.		The	front	panel	was	expensive	and	
software	is	cheap	to	produce	in	quantity.	

	 If	you	take	the	difference	between	the	address	of	B	and	the	address	of	A,	the	
difference	is	c,	or	12	decimal.		That's	because	each	"float"	takes	up	4	bytes	of	8	bits	
each,	or	32	bits.		So,	the	difference	isd	the	12	bytes	needed	to	store	the	three	values	
of	the	vector	A.		The	first	element	of	A	(pointed	to	by	the	variable	A),	A[0],	is	at	
0x00417000,	the	second	A[1]	is	at	0x00417004,	and	A[2]	is	at	0x00417008.		The	
three	elements	of	B	would	be	at	0x0041700c,	0x00417010,	and	0x00417014.		We	
don't	really	need	to	know	all	that	to	follow	the	action,	but	there	are	times	when	we	
need	to	follow	pointers	to	understand	more	complicated	programs.	

	 So,	now	let's	take	one	more	step.		We	go	back	up	to	the	for.		That's	because	
we	are	in	a	loop.		The	statement	within	the	braces	is	executed	for	each	value	of	i.		We	
have	not	quite	finished	the	previous	loop	because	i	is	still	zero.		Take	another	step.		
Now	we	are	back	down	to	the	dot	calculation	again.		Notice	dot	has	the	value	4.0	as	
expected	after	executing	this	statement	the	last	time.		Now	i	has	been	changed	to	1.		
We	can	see	the	values	of	A[1]	and	B[1].		Click	two	more	steps	and	we	see	that	dot	is	
14	and	we	are	about	to	add	A[2]*B[2}	to	it.	

	

	 12	

	 One	more	click	to	step	and	we	are	up	at	the	"for"	again,	then	another	click	
and	we	fall	out	of	the	loop.		The	variab;le	i	has	been	incremented	to	3	and	so	it	fails	
the	test	"i<3".		We	are	at	the	printf	that	will	send	our	answer	to	the	screen.	

	 OK,	let's	be	bold.		This	time	we	will	"step	int"	the	function.		printf	is	a	library	
function	that	has	been	"linked"	into	our	application	when	it	was	built.		That	was	
done	by	the	"linker",	another	application	of	the	IDE.		So,	when	we	step	inside	printf,	
we	find	ourselves	at	the	beginning	of	some	unfamiliar	code	that	we	didn't	write.	

	

Ugh!		Let's	make	an	escape.		We	will	"step	out."		Normally	we	won't	want	to	do	any	
debugging	inside	library	functions.		(But,	if	we	ever	wanted	to	know	how	they	
worked	in	detail,	that's	how	we	could	find	out.)		We	will	"step	out."		The	printf	has	
been	executed.	

	

	 At	this	point	we	are	done	with	what	we	wanted	to	see,	and	will	just	let	the	
program	"go".		Either	click	the	green	arrow	or	relares	on	the	Debug	/	Continue	
menu	item.		Since	there	are	no	more	breakpoints	that	we	will	encounter,	execution	
continues	normally	until	we	exit.	

	 Now,	having	satisfied	ourselves	that	it	works	OK,	we	can	tewll	the	IDE,	Visual	
Studio	2008,	that	we	are	done	with	debugging.		The	next	time	we	create	an	
executable	application	(Howdy.exe)	leave	out	support	for	debugging.		If	you	look	at	
the	size	of	the	debug	version	of	the	executable	file,	it's	28.0	KB.		That's	big	for	a	
program	that	does	so	little.	

	 13	

	 Back	in	Visual	Studio,	look	for	a	text	block	just	to	the	right	of	the	green	debug	
(go)	arrow	that	says	"debug".		This	is	where	you	designate	the	nature	of	the	target	
application.		Change	it	to	"Release".		This	is	the	version	that	you	will	emailt	to	all	
your	friends	for	their	entertainment.		Now,	build	the	solution	again.		Within	the	
Howdy	folder	there	is	now	a	"release"	subfolder,	and	in	it	is	your	program,	now	iun	
a	more	compact	release	of	only	7.5	KB	size.		This	is	what	you	copy	and	send	out.		
(Just	to	experience	it,	double	click	on	the	Howdy.exe	in	the	release	folder.		Yep,	it	
works.		That's	what	all	your	friends	will	see	when	they	run	this	delightful	creation	of	
yours	on	a	PC.		(Don't	bother	to	send	it	to	Mac	users;	it	won't	run	on	a	Mac	unless	
you	boot	the	thing	in	Windows	or	run	Windows	as	a	virtual	machine,	like	I'm	doing	
right	now.)	

	

	 So,	there	it	is.		With	a	typical	programming	language,	you	can	create	
applications	that	can	do	some	analytical	work.		Furthermore,	you	can	create	copies	
of	the	program	that	can	run	on	any	PC.		Within	some	development	tools	(like	XCode	
for	the	Mac)	you	can	create	versions	for	different	computers,	one	release	version	for	
unix	systems,	another	for	Macs,	and	another	for	PC's.		All	of	these	run	without	
having	to	have	Visual	Studio	(or	another	development	IDE)	open.		(Debugging,	on	
the	other	hand,	requires	you	to	be	in	the	IDE.)	

	 Hopefully	this	gives	you	a	bit	of	a	sense	of	what	computer	software	is	and	
how	it	runs.		We	have	not	yet	gotten	into	files	and	reading	input	and	outputting	stuff	
that	we	could	look	at	with,	say	a	text	editor	or	plot	with	another	program	like	Excel.		
We'll	get	to	that	later.		What	will	have	to	remain	a	mystery	for	now	is	how	the	
statements	get	converted	into	machine	instructions,	and	how	those	execute	on	
digital	hardware.		We	just	can't	get	further	intop	that	here,	but	in	EGR222	
Mechatronics	we	will	dive	deeper	to	the	machine	language	level.		How	the	computer	
hardware	works	is	a	matter	of	Digital	Design	and	Computer	Organization,	farther	
than	we	can	go	without	dedicated	courses.	

	 14	

	 Taking	the	next	step:		Let's	write	a	C	program	that	will	actually	perform	some	
useful	analysis.		We	will	keep	the	data	small	just	to	make	it	easier	to	handle	for	this	
exercise.		Here's	the	scenario:		There	is	a	Tribometer	(friction	measuring	machine)	
that	records	force	and	torque	at	regular	intervals	while	a	sample	disk	of	plastic	
material	is	being	rotated	against	a	piece	of	brass	metal.		We	are	interested	in	how	
the	average	force	and	torque	vary	over	time.		We	are	also	interested	in	how	they	
may	correlate	over	time:	does	one	lag	or	lead	the	other?		What	we	want	to	do	is	take	
11	point	moving	averages	for	Force,	Torque,	and	the	correlation	coeficient.		We	will	
get	our	data	from	a	text	file,	and	put	our	output	to	a	text	file.		If	we	do	this	right,	we	
can	import	the	output	file	into	Excel	and	use	it	to	graph	the	results.	

	 The	input	file	is	shown	below	(shown	in	two	columns).		There	are	60	
samples.		On	each	line	(after	the	"header"	information)	are	data	for	sample	number,	
force,	and	torque.		(The	force	and	torque	numbers	are	actually	Voltages	for	the	
instruments	recorded;	conversion	to	appropriate	units	is	a	later	step	in	the	
analysis.)	

Tribometer data 60 Samples
Data out: Samplenumber Force
 Torque
1 3.364 1.19
2 3.369 1.199
3 3.374 1.191
4 3.373 1.198
5 3.369 1.19
6 3.381 1.2
7 3.376 1.201
8 3.364 1.189
9 3.364 1.19
10 3.357 1.19
11 3.367 1.189
12 3.362 1.19
13 3.364 1.194
14 3.369 1.194
15 3.364 1.19
16 3.364 1.194
17 3.358 1.187
18 3.372 1.19
19 3.364 1.187
20 3.357 1.187
21 3.364 1.19
22 3.352 1.182
23 3.376 1.196
24 3.367 1.196
25 3.353 1.177
26 3.359 1.182
27 3.354 1.185
28 3.359 1.189
29 3.357 1.185

30 3.362 1.189
31 3.364 1.19
32 3.364 1.184
33 3.362 1.184
34 3.352 1.179
35 3.364 1.19
36 3.367 1.187
37 3.364 1.185
38 3.35 1.176
39 3.359 1.185
40 3.35 1.195
41 3.352 1.185
42 3.347 1.188
43 3.333 1.174
44 3.337 1.188
45 3.339 1.189
46 3.337 1.184
47 3.334 1.187
48 3.342 1.185
49 3.345 1.19
50 3.33 1.182
51 3.34 1.199
52 3.335 1.19
53 3.333 1.199
54 3.333 1.19
55 3.318 1.177
56 3.335 1.194
57 3.318 1.189
58 3.345 1.213
59 3.328 1.213
60 3.328 1.228

	

	 15	

	 What	we	want	from	our	program	is	the	average,	at	sample	6,	of	samples	1	to	
11	for	both	force	and	torque.		Then	for	sample	7	we	will	want	the	average	of	
samples	2	to	12	for	force	and	torque.		And,	so	on,	until	we	get	to	sample	55.		(We	
don't	do	this	for	samples	1-5	or	56-60	becuase	we	do	not	have	a	full	11	sample	set	
from	5	before	to	5	after.)		We	will	also	want	correlation	coeficients,	but	we'll	do	that	
as	a	second	step.	

	 So,	we	know	what	our	input	looks	like,	and	what	we	want	to	do	with	it.		Next	
we	need	to	know	what	our	output	will	look	like.		We	will	want	to	make	it	suitable	for	
loading	into	Excel,	so	we	want	a	"tab	delimited"	or	a	"comma	delimited"	file.		I'm	
going	to	choose	comma	delimited.		You	can	see	a	comma;	you	can't	see	a	tab.		That	
will	make	things	easier	to	manage.		So,	let's	keep	it	simple.		Let	the	file	look	like	this,	
where	xxx,	yyy,	and	zzz	are	our	outputs.		But	we	will	initially	skip	the	Correlation	
values	zzz.	

Tribometer analysis
Sample, Force, Torque, Correlation
6, xxx, yyy, zzz
7, xxx, yyy, zzz
........

	 We	are	now	ready	to	create	a	C	program	to	do	this.		No	sense	in	getting	fancy;	
we'll	make	it	a	console	application.		Proceeding	as	we	did	earlier	for	Howdy,	we	
create	an	empty	application	named	"Tribanal".		It	looks	just	like	Howdy	did	at	first.	

	

	 16	

	 We	are	going	to	need	to	read	and	write	"files".		That's	already	covered	by	the	
standard	input	and	output	libraries.		So,	what	we	want	to	do	first	in	the	code	is	
provide	the	variables	for	those	files	by	adding	(before	main)	global	FILE	variables:	

FILE	*inFile,	*outFile;	

	 The	two	variables	are	pointers	to	the	files.		Whenever	we	do	something	with	
a	file,	we	need	to	use	this	pointer	to	indicate	which	file	we	are	using.		The	first	thing	
we	will	do	in	main	is	open	these	files	and	make	sure	we	are	successful	doing	so.		(If	
either	file	fails	to	open,	we	will	quit.)		Here's	how	we	do	it:	

	 inFile=fopen("Tribometer	sample	data.txt",	"r");	
	 outFile=fopen("Tribanalout.txt",	"w");	
	 if(inFile==0	||	outFile==0)	{	
	 	 printf("File	failed	to	open\n");	
	 	 while(getchar==0);	
	 	 return	1;}	
	
The	fopen	function	opens	the	file	named,	either	for	read	purposes	"r"	or	write	
purposes	"w".		The	overall	Tribanal.cpp	file	now	looks	like	this:	

// Tribanal.cpp : Defines the entry point for the console
application.
//

#include "stdafx.h"

FILE *inFile, *outFile;

int _tmain(int argc, _TCHAR* argv[])
{
 inFile=fopen("Tribometer sample data.txt","r");
 outFile=fopen("Tribanalout.txt","w");
 if(inFile==0 || outFile==0){
 printf("File failed to open\n");
 while (getchar()==0);
 return 1;}
 while (getchar()==0);
 return 0;
}

	 Notice	the	use	of	"=="	to	test	whether	something	is	zero.		A	zero	pointer	means	
it's	invalid.		We	use	"=="	for	"is	equal	to"	in	logical	expressions	used	to	test	whether	
something	is	true	or	not,	such	as	an	"if"	statement	in	this	case.		If	what	we	test	is	true,	in	
this	case	if	either	pointer	is	zero,	we	do	the	stuff	inside	the	braces.		The	symbol	"||"	
means	a	logical	"or"	operation.		If	either	"=="	test	returns	true,	then	we	do	the	exit.		
Otherwise,	we	skip	the	stuff	controlled	by	the	"if"	statement.		Notice	that	we	use	"=="	
inside	the	while	loop	too.		If	you	use	"="	instead	of	"=="	the	program	will	try	to	take	the	
value	on	the	right	and	put	it	into	whatever	is	on	the	left.		In	this	case,	it	would	set	both	

	 17	

pointers	to	zero,	regardless	of	what	they	were	before.		This	is	one	of	the	most	common	
editing	errors	in	C	and	C++.	

	 Let's	see	if	it	works.		We	hit	the	debug	button	and	get:	

	

	 This	is	what	we	expect!		It	did	not	find	our	input	file.		Put	the	file	"Tribometer	
sample	data.txt"	file	into	the	Tribanal	folder.		(Notice	that	the	file	"Tribanalout.txt"	
exists.		We	can	double	click	on	it	to	open	it	in	Notepad	and	see	the	contents.		But	it	is	
empty	because	we	have	not	written	anything	to	it	yet.)		We	now	try	"debug"	again.		
This	time	no	message.		Oh,	we	didn't	have	it	write	anything	out	if	we	were	successful	
opening	the	files.		So,	that's	what	it	is	supposed	to	do.		Boith	files	opened	OK.	

	

	 Next	we	will	add	a	print	statement	to	say	that	it's	working	OK.		We	also	want	
to	write	the	header	information	out	to	the	output	file.		To	do	that	we	can't	use	
"printf";	that	function	writes	to	the	console	window.		Instead,	we	use	"fprintf".		It	
does	the	same	thing,	but	writes	out	to	a	file.		We	have	to	use	the	pointer	to	the	
output	file	to	tell	it	where	to	write	to.		While	we	are	at	it,	we	will	"comment"	our	
source	code	by	adding	a	note	to	describe	what	is	going	on.		Comments	are	ignored	
by	the	compiler.		Use	"/*"	to	start	a	comment	and	"*/"	to	end	the	comment.		That's	
the	C	form	of	comments.		For	C++	you	can	alternatively	add	"\\"	at	the	point	in	a	line	
beyond	which	everything	is	a	comment.		Notice	that	the	"empty"	project	included	a	
comment	on	the	first	line.		Since	we	are	using	the	C++	compiler,	we	can	do	either.		As	
far	as	Visual	Studio	2008	knows,	we	are	writing	C++.		We	just	happen	to	be	limiting	
ourselves	to	the	C	subset	of	C++	for	now.		After	doing	this,	try	it	out.		If	you	look	in	
the	Tribanalout.txt	file,	you	should	now	see	the	headers.	

 /* Print out header */
 printf("Tribanal started. Files open\n");
 fprintf(outFile,"Tribometer Analysis\n");
 fprintf(outFile,"Sample, Force, Torque, Correlation\n");

	 18	

 /* Exit */
 printf("Tribometer end; hit return to exit\n");
 while (getchar()==0);
 return 0;
}

	 Next,	we	want	to	provide	storage	for	the	data	we	will	get	in.		There	are	
several	different	ways	to	do	this,	but	here	we	will	do	what	ever	is	simplest.		First,	we	
will	assume	that	we	will	never	have	more	than	100	samples.		(If	we	get	more,	we	
will	need	to	warn	the	user	and	exit.)		So,	we	need	to	provide	storage	space	for	all	
those	samples.		If	we	index	the	same	way	we	number	tha	samples,	we	will	need	
room	for	101	of	them	since	there	is	no	sample	zero.		We	will	makle	the	samples	
global	floats.		So,	we	will	need	to	ad	the	declarations	before	main:	

#define	MAXSAMPLES	100	
float	forceArray[MAXSAMPLES+1];	
float	torqueArray[MAXSAMPLES+1];	
int	nSamples=0;	
	
	 Notice	that	the	"#define"	statement	has	no	semicolon.		It	is	not	an	
executyable	statement.		It	is	a	"MACRO".		A	very	simple	one.		It	simply	says	that	
whenever	the	compiler	sees	"MAXSAMPLES"	it	is	to	plug	in	"100".		So,	both	arrays	
will	have	101	floats	each.		Note	also	the	use	of	a	capital	letter	(not	the	initial	one)	in	
the		global	variables.		That	is	a	convention	to	remind	us	that	these	are	global;	we	can	
see	them	from	anywhere	in	our	program.		(Globals	are	defined	outside	all	
functions.)		Local	variables	can	only	bee	seen	and	used	within	the	function	where	
they	are	defined.		We	will	use	all	lower	case	for	local	variable	names.		Conventions	
like	this	help	remind	us	of	what	kind	of	things	these	are.			

	 Now,	within	main,	we	need	code	to	load	up	these	arrays	with	the	values	from	
the	file.		The	first	aspect	of	this	is	to	read	in	the	number	of	samples	so	we	can	knopw	
how	many	samples	to	read.		To	so	this,	we	use	a	"fscanf"	function.		The	fscanf	
function	returns	an	integer	that	tells	us	how	many	variab;les	we	have	successfully	
read.		So,	we	need	to	define	an	integer	in	main;	call	it	i.		That	needs	to	be	done	before	
other	executable	statements	(the	fopen	calls).		We	also	need	a	place	to	put	the	
expected	number	of	samples.		We	will	call	that	local	variable	"nsamples".		Notice	
that	this	is	a	different	variable	than	nSamples;	capitalization	matters.			

	 Also,	because	in	C	arguments	are	passed	into	functions	by	value,	what	we	
need	to	do	for	nsamples	is	pass	not	the	current	value	of	nsamples,	but	a	pointer	to	
wher	eit	is	in	memory.		That's	what	the	"&"	operator	does	in	front	of	a	variable	
name.		It	says,	a	pointer	to	the	variable,	not	the	variable	itself.		Right	now	nsamples	
isn't	even	initialized.		But,	the	location	of	nsamples	is	known.		Within	the	text	string	
we	want	to	read	in,	"%d"	stands	for	some	integer	we	will	read,	and	put	into	the	
variable	at	the	address	&nsamples.		So,	after	executing	the	fscanf	function	here,	we	
should	know	how	many	samples	are	in	the	file.	

	 With	the	added	code,	we	now	have:	

	 19	

// Tribanal.cpp : Defines the entry point for the console
application.
//

#include "stdafx.h"

#define MAXSAMPLES 100

float forceArray[MAXSAMPLES+1];
float torqueArray[MAXSAMPLES+1];
int nSamples=0;
FILE *inFile, *outFile;

int _tmain(int argc, _TCHAR* argv[])
{
 int i,nsamples;

 /* Open files */
 inFile=fopen("Tribometer sample data.txt","r");
 outFile=fopen("Tribanalout.txt","w");
 if(inFile==0 || outFile==0){
 printf("File failed to open\n");
 while (getchar()==0);
 return 1;}

 /* Print out header */
 printf("Tribanal started. Files open\n");
 fprintf(outFile,"Tribometer Analysis\n");
 fprintf(outFile,"Sample, Force, Torque, Correlation\n");

 /* Read in samples*/
 i=fscanf(inFile,"Tribometer data %d Samples",&nsamples);
 if(i!=1){
 printf("Couldn't read number of samples\n");
 while(getchar()==0);
 return 1;}
 i=fscanf(inFile,"Data out: Samplenumber Force Torque");
 printf("File has %d samples\n",nsamples);

 /* Exit */
 printf("Tribometer end; hit return to exit\n");
 while (getchar()==0);
 return 0;
}

	 We	then	test	it	to	make	sure	it	works:	

	

	 20	

		 What	we	need	to	do	is	add	a	loop	to	read	in	all	the	data.		Here's	how	we	will	
do	that.		We	need	to	add	another	integer	variable	j	for	a	place	to	put	the	sample	
number.		at	the	end	we	have	to	subtract	one	from	nSamples	to	cancel	the	last	
nSamples++.	

 int i,j,nsamples; (modified existing statement)

 (other stuff here)

 for(nSamples=1;nSamples<=nsamples;nSamples++){
 i=fscanf(inFile,"%d %f %f",&j,&forceArray[nSamples],
 &torqueArray[nSamples]);
 if(i<3){
 printf("Got sample discrepancy at %d %d %d\n",
 nSamples, i, j);
 while(getchar()==0);
 return 1;
 }
 }
 nSamples--;
 printf("%d Samples read.\n",nSamples);
	

	 Reading	in	files	can	be	a	tricky	business.		If	they	were	created	in	an	odd	
format,	they	may	not	read	properly.		For	example,	text	files	from	a	Mac	sometimes	
give	trouble.		If	the	file	originated	in	Excel,	write	it	out	as	a	windows	text	file.		Some	
people	will	tell	you	that	"fscanf"	skips	"white	space",		characters	you	can't	see.		
That's	generally	true	for	spaces.		But	don't	count	on	it	for	other	things.		Without	the	
"\n"	in	the	scanf	formatting	string,	these	won't	work.		Notice	the	diagnostic	printf	
statement	that	gets	written	if	a	problem	develops.		That's	a	useful	technique	to	help	
in	debugging.	

	 Something	else	to	notice	is	that	we	can	break	up	a	long	statement	into	
multiple	lines.		The	";"	ends	a	statement.		we	can	also	put	multiple	statements	on	one	
line.		Generally	one	statement	per	line	is	preferred,	with	blank	lines	(and	comments)	
separating	pieces	of	code	that	work	together	to	do	something,	like	read	in	the	data	
in	this	case.		Also	notice	the	use	of	indentation	to	keep	track	of	blocks	of	code	that	
are	grouped	together	inside	if	and	loop	structures.		If	you	do	not	use	some	form	of	
indentation,	it	can	be	very	difficult	to	keep	track	of	what	is	going	on	in	lengthy	
functions.	

	 OK,	so	the	next	thing	we	want	to	do	is	the	code	that	does	the	averaging.		To	
do	this	we	need	"nested	loops"	with	an	outer	loop	to	move	down	from	sample	6	to	
the	6th	from	the	end,	and	a	loop	inside	to	count	off	11	samples	to	be	averaged.		We	
will	also	need	some	new	variables	to	hold	the	averages.		We	won't	try	to	hold	the	
results	in	the	program;	we'll	write	them	out	as	we	go,	into	the	Tribanalout.txt	file.	

Here's	what	we	will	need	to	add:	

 float forcesum, torquesum; (up where we declare variables)

	 21	

 /* get averages */
 for(i=6;i<nSamples-5;i++){
 forcesum=0.0;
 torquesum=0.0;
 for(j=i-5;j<i+5;j++){
 forcesum=forcesum+forceArray[j];
 torquesum=torquesum+torqueArray[j];}
 forcesum=forcesum/11;
 torquesum=torquesum/11;
 fprintf(outFile,"%d, %f, %f\n",i,forcesum,torquesum);}
	

When	we	run	it,	and	exit,	here	is	what	we	find	in	Tribanalout.txt	(only	the	fiorst	
several	lines):	

Tribometer Analysis
Sample, Force, Torque, Correlation
6, 3.062818, 1.085273
7, 3.063091, 1.085182
8, 3.062454, 1.084364
9, 3.061545, 1.084636
10, 3.061182, 1.084273
.....	

	 Now	we	can	read	this	file	with	Excel	and	plot	the	results.	

	 But,	we	wanted	to	do	more;	we	wanted	the	correlation	coeficients	as	a	
function	of	time	too.		That's	more	complicated.		We	need	to	get	the	variance	and	
standard	deviation	for	each	variable	as	well	as	the	sum	of	products.		To	make	a	long	
story	short,	here	's	the	code	we	have	to	add:	

#include <math.h> (up	after	the	first	#include)	
	
	 We	need	the	math	library	to	be	able	to	use	the	square	root	function.		Notice	the	
symbols	"<"	and	">"	used.		This	indicates	that	the	file	is	not	local	to	our	project	folder.		
It's	an	"include	file"	(with	file	sextension	.h)	that	is	kept	in	a	centralized	location	by	
Visual	Studio	2008	for	use	by	all	projects.		You	should	never	modify	one	of	these	original	
include	files.	

 float forcesigma, torquesigma, sumproducts; (with	other	declarations)

	 We	need	variables	to	accumulate	the	variance	for	both	force	and	torque,	and	the	
products	of	these	two	variables.		Finally,	below,	we	need	to	use	the	same	structures	to	
accumulate	the	sums.		Notice	that	we	have	to	zero	them	all	out	when	we	start	another	
set	of	avarages.		(The	overall	program	file	is	appended	to	the	end	of	this	document.)	
	
 /* get averages */
 for(i=6;i<nSamples-5;i++){
 forcesum=0.0;
 torquesum=0.0;
 /*actually variance up until - mean squared and do sqrt*/

	 22	

 forcesigma=0.;
 torquesigma=0.;
 sumproducts=0.;
 for(j=i-5;j<i+5;j++){
 forcesum=forcesum+forceArray[j];
 torquesum=torquesum+torqueArray[j];
 forcesigma=forcesigma+forceArray[j]*forceArray[j];

 torquesigma=torquesigma+torqueArray[j]*torqueArray[j];

 sumproducts=sumproducts+forceArray[j]*torqueArray[j];
 }
 forcesum=forcesum/11;
 torquesum=torquesum/11;
 forcesigma=sqrt(forcesigma/11-forcesum*forcesum);
 torquesigma=sqrt(torquesigma/11-torquesum*torquesum);
 sumproducts=(sumproducts/11-forcesum*torquesum);
 sumproducts=sumproducts/(forcesigma*torquesigma);
 fprintf(outFile,"%d, %f, %f, %f\n",i,forcesum,
 torquesum, sumproducts);
 }
	

	 We	now	get	an	output	file	that	looks	like	this:	

Tribometer Analysis
Sample, Force, Torque, Correlation
6, 3.062818, 1.085273, 0.999955
7, 3.063091, 1.085182, 0.999950
8, 3.062454, 1.084364, 0.999964
9, 3.061545, 1.084636, 0.999968
10, 3.061182, 1.084273, 0.999971
.....	

We	can	read	it	into	Excel	and	plot	it:	

	

	 23	

	 Unfortunately,	the	data	varies	so	little	within	these	few	samples	that	we	can't	
see	much.		That	can	be	mitigated	by	subtracting	a	constant	from	each	value	(and	in	
the	case	of	correlation,	multiplacation	by	100	to	amplify	the	effect).		Columns	were	
added	in	Excel	to	do	that,	and	now	the	chart	that	plots	the	modified	data	shows	the	
small	variations	that	may	be	of	interests,	and	may	tell	the	user	something	about	the	
friction	process	and	how	it	changes	over	time.		(Typically	there	would	be	many	
thousands	of	samples.)		Is	thgere	a	trend	here?		Or	is	it	all	just	noise?		Hard	to	tell	
yet,	but	the	trend	lines	for	the	averages	are	changing.		The	correlation	is	extremely	
high,	but	perhaps	that's	just	because	nothing	much	has	happened	yet.		Or,	is	there	an	
error	in	the	program?		We	should	go	back	and	check	it	with	known	data,	for	which	
the	outcome	is	known,	to	verify	the	correctness	of	the	program	before	we	do	
anything	serious	with	these	results.		[No	time	to	check	it	yet.		I'm	suspicious.]	

Tribometer Analysis

Sampl
e Force Torque

Correlatio
n Force-3.0

Torque-
1.07

(Correlation-
.999*100

6
3.06281

8
1.08527

3 0.999955 0.062818 0.015273 0.0955

7
3.06309

1
1.08518

2 0.99995 0.063091 0.015182 0.095

8
3.06245

4
1.08436

4 0.999964 0.062454 0.014364 0.0964

9
3.06154

5
1.08463

6 0.999968 0.061545 0.014636 0.0968

10
3.06118

2
1.08427

3 0.999971 0.061182 0.014273 0.0971

11
3.06072

7
1.08427

3 0.999974 0.060727 0.014273 0.0974
	

	 24	

	

	 So,	here	we	have	an	example	of	C	used	to	do	analysis,	supplemented	by	Excel	
to	do	the	plotting,	as	well	as	an	example	of	how	to	create	a	useful	application.	

